Planning Committee/ Recycling Board Members

Jim Oddie, **President** ACWMA

Sarah Vared, 1st Vice President Source Reduction Specialist

Peter Maass, **2nd Vice President** ACWMA

Jillian Buckholz, Recycling Programs

Bernie Camara, Recycling Materials Processing Industry

Sara Lamnin, ACWMA

Dianne Martinez, ACWMA

John Moore, Environmental Organization

Tim Rood, ACWMA

Toni Stein, Environmental Educator

Vacant, Solid Waste Industry Representative

Wendy Sommer, Executive Director

AGENDA

MEETING OF THE PLANNING COMMITTEE AND ALAMEDA COUNTY RECYCLING BOARD

Thursday, May 10, 2018

7:00 P.M.

Castro Valley Library 3600 Norbridge Avenue Castro Valley, CA 94546 510-667-7900 (Directions provided)

Teleconference
Jim Oddie
Disney's Grand Californian Hotel
1600 Disneyland Drive
Anaheim, CA 92802
714-635-2300

Meeting is wheelchair accessible. Sign language interpreter may be available upon five (5) days' notice to 510-891-6500.

- I. CALL TO ORDER
- II. ROLL CALL
- III. ANNOUNCEMENTS BY THE PRESIDENT

Page IV. CONSENT CALENDAR

- 1. Approval of the Draft Minutes of the April 25, 2018 Joint Meeting of the WMA Board, the Energy Council, and Recycling Board (Tom Padia)
- 7 2. Board Attendance Record (Tom Padia)
- 9 3. Written Report of Ex Parte Communications (Tom Padia)

V. OPEN PUBLIC DISCUSSION

An opportunity is provided for any member of the public wishing to speak on any matter within the jurisdiction of the Board, but not listed on the agenda. Each speaker is limited to three minutes.

VI. REGULAR CALENDAR

11 1. Civicorps Certificate of Support (Tom Padia)

This item is for information only.

2. Agency Goals and Indicators Update (Justin Lehrer)

This item is for information only.

17 3. Bay-Friendly Rated Landscape Update (Kelly Schoonmaker)

This item is for information only.

VII. OTHER PUBLIC INPUT

VIII. COMMUNICATIONS/MEMBER COMMENTS

IX. ADJOURNMENT

Castro Valley Public Library

3600 Norbridge Avenue Castro Valley, CA 94546 510-667-7900

Directions

From South Bay	From	South	Bav:
----------------	------	-------	-------------

I-880 N toward OAKLAND.

Merge onto I-238 S toward I-580/CASTRO

VALLEY/STOCKTON.

I-238 S becomes I-580 E.

Take the REDWOOD ROAD exit toward CASTRO

VALLEY.

Turn LEFT onto REDWOOD ROAD.

Take the $3^{rd}\,$ RIGHT onto CASTRO VALLEY BLVD.

Take the $2^{nd}\,$ RIGHT onto NORBRIDGE AVE.

Destination will be on the right.

From East Bay:

I-680 S toward SAN JOSE.

Merge onto I-580 W toward OAKLAND.

Take the REDWOOD ROAD exit toward CASTRO VALLEY.

Turn LEFT onto REDWOOD ROAD.

Take the 3rd RIGHT onto CASTRO VALLEY

BLVD.

Take the 2nd RIGHT onto NORBRIDGE AVE.

Destination will be on the right.

From San Francisco:

I-80 E toward OAKLAND.

Merge onto I-580 E toward DOWNTOWN

OAKLAND/HAYWARD-STOCKTON.

Take the REDWOOD ROAD exit toward CASTRO

VALLEY

Turn LEFT onto REDWOOD ROAD.

Take the 3rd RIGHT onto CASTRO VALLEY

RLAD.

Take the 2nd RIGHT onto NORBRIDGE AVE.

Destination will be on the right.

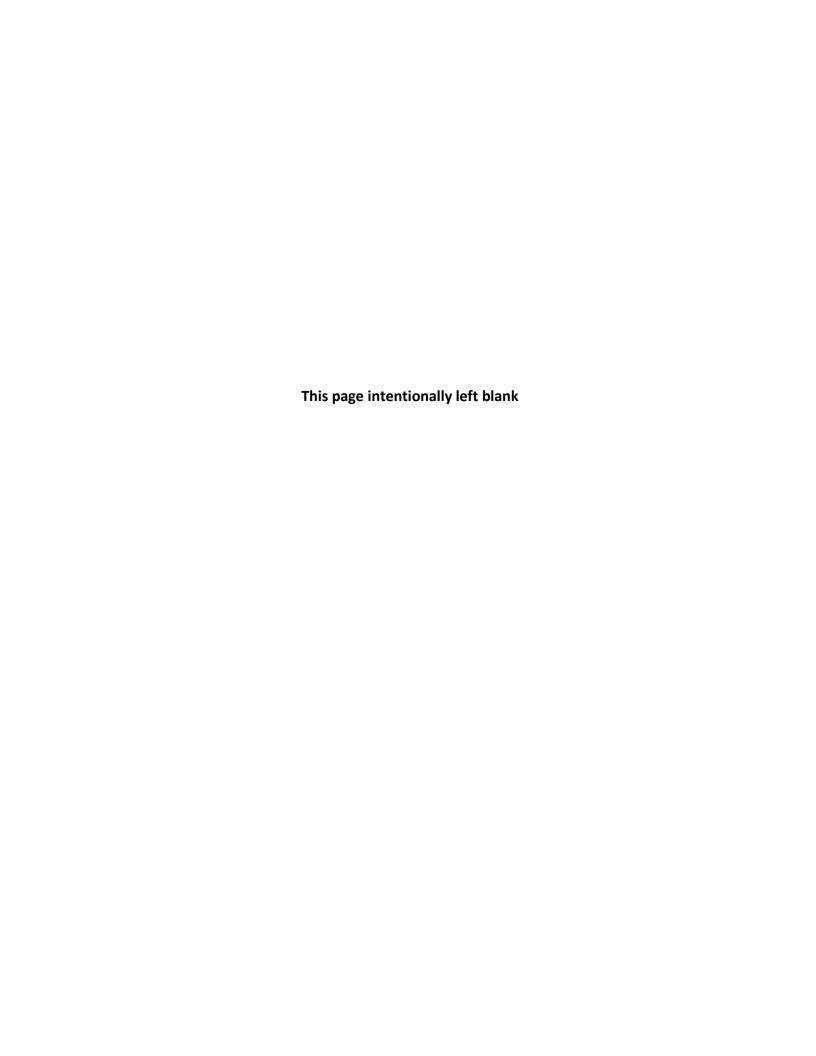
From San Ramon/Crow Canyon Road:

Head NORTHEAST on CROW CANYON RD.

Make a U Turn

MERGE onto I 680 S via the ramp to SAN JOSE

Take the EXIT onto I-580 toward


DUBLIN/OAKLAND

Take the EXIT toward CASTRO VALLEY.

VALLEY.

Turn LEFT onto E CASTRO VALLEY BLVD.

Turn LEFT onto NORBRIDGE AVE.

MINUTES OF THE JOINT MEETING OF THE ALAMEDA COUNTY WASTE MANAGEMENT AUTHORITY (WMA) BOARD, THE ENERGY COUNCIL (EC)

AND

THE SOURCE REDUCTION AND RECYCLING BOARD (RB)

Wednesday, April 25, 2018

3:00 P.M.

StopWaste Offices 1537 Webster Street Oakland, CA 94612 510-891-6500

Teleconference

Ken Lewis
Hyatt Regency
Lake Tahoe Resort
111 Country Club Drive
Incline Village, Nevada 89451
775-832-1234

Lorrin Ellis 7711 Center Avenue, Ste. 200 Huntington Beach, CA 92647 714-252-2500

I. CALL TO ORDER

President Mike Hannon, WMA, called the meeting to order at 3:01 p.m.

II. ROLL CALL OF ATTENDANCE WMA, EC, & RB:

City of Albany Peter Maass, WMA, EC, RB

Castro Valley Sanitary District Dave Sadoff, WMA

City of Dublin Melissa Hernandez, WMA, EC City of Emeryville Dianne Martinez, WMA, EC, RB City of Hayward Sara Lamnin, WMA, EC, RB City of Livermore Bob Carling, WMA, EC City of Oakland Dan Kalb, WMA, EC Oro Loma Sanitary District Rita Duncan, WMA City of Piedmont Tim Rood, WMA, EC, RB City of Pleasanton Jerry Pentin, WMA, EC City of Newark Mike Hannon, WMA, EC

City of San Leandro Deborah Cox, WMA, EC

City of Union City Lorrin Ellis, WMA, EC (teleconference)

Environmental Organization John Moore, RB Environmental Educator Toni Stein, RB

Recycling Materials Processing Industry Matthew Southworth, RB (Interim)

Recycling Programs Jillian Buckholz, RB Source Reduction Specialist Sarah Vared, RB

ABSENT:

County of Alameda Keith Carson, WMA, EC
City of Alameda Jim Oddie, WMA, EC, RB
City of Berkeley Jesse Arreguin, WMA, EC
City of Fremont Vinnie Bacon, WMA, EC

Solid Waste Industry Representative Ken Lewis, RB

Staff Participating:

Wendy Sommer, Executive Director
Tom Padia, Deputy Executive Director
Patricia Cabrera, Administrative Services Director
Anu Natarajan, Legislative and Regulatory Affairs Manager
Richard Taylor, WMA Legal Counsel
Farand Kan, County Counsel
Arliss Dunn, Clerk of the Board

Others Participating:

Arthur Boone

III. ANNOUNCEMENTS BY PRESIDENTS

There were none.

IV. OPEN PUBLIC DISCUSSION FROM THE FLOOR

Arthur Boone provided comments regarding the litigation involving StopWaste and Waste Management, Inc. Mr. Boone also reiterated his opposition to mixed-waste processing and the viability of planned operations at the Davis Street OMRF.

V. CONSENT CALENDAR

- Approval of the Draft WMA/EC Minutes of March 28, 2018 (Wendy Sommer)
- 2. Approval of the Draft PC/RB Minutes of March 8, 2018 (Tom Padia)
- 3. Recycling Board Attendance Record (Tom Padia)
- 4. Written Report of Ex Parte Communications (Tom Padia)
- 5. Grants Issued Under Executive Director Signature Authority (Wendy Sommer)

There were no public comments for the consent calendar. Board member Rood made the motion

to approve items V1 & V5 for the WMA. Board member Pentin seconded and the motion carried 15-0 (Ayes: Carling, Cox, Duncan, Ellis, Hannon, Hernandez, Kalb, Lamnin, Maass, Martinez, Pentin, Rood, Sadoff. Nays: None. Abstain: None. Absent: Arreguin, Bacon, Carson, Oddie).

Board member Maass made the motion to approve items V2, V3 &V4 for the RB. Board member Lamnin seconded and the motion carried 8-0 (Ayes: Buckholz, Lamnin, Maass, Martinez, Moore, Rood, Southworth, Vared. Nays: None. Abstain: None. Absent: Lewis, Oddie, Stein).

Board member Rood made the motion to approve item V1 for the EC. Board member Pentin seconded and the motion carried 14-0 (Ayes: Carling, Cox, Ellis, Hannon, Hernandez, Kalb, Lamnin, Maass, Martinez, Pentin, Rood. Nays: None. Abstain: None. Absent: Arreguin, Bacon, Carson, Oddie).

VI. REGULAR CALENDAR

1. Legislative Positions for 2018 (WMA only) (Anu Natarajan)

Staff recommends that the Board adopt the positions recommended for the Agency for the 2018 session of the California Legislature.

Anu Natarajan provided a summary of the staff report. A link to the report is available here: Legislative-Positions-2018-04-25-18

There were no public comments on this item. Board member Martinez inquired about AB 1952 (Arambula): Envision a Hunger Free California Act, and how the bill fits into the agency's mission. Ms. Natarajan stated that the bill aligns with the agency's food waste project. It is currently a "hold" bill and staff will come back with further information as it becomes available. Board member Stein inquired about AB 1975 (Chu) Nuisance Odors. Ms. Natarajan stated that staff looked at the bill, but because the bill targets Santa Clara County and does not impact Alameda County, it is not on our watch list. President Hannon asked in future reports to the Board that staff include a paragraph on bills that may pose any possible financial impacts or staff impacts that may pertain to jurisdictions. Ms. Natarajan stated that staff did look for those impacts and at this point we do not know what the appropriations will be and none of them are an unfunded mandate yet, but we will certainly highlight any impacts that may affect local jurisdictions.

Board member Kalb made the motion to approve the staff recommendation. Board member Carling seconded and the motion carried 15-0 (Ayes: Carling, Cox, Duncan, Ellis, Hannon, Hernandez, Kalb, Lamnin, Maass, Martinez, Pentin, Rood, Sadoff. Nays: None. Abstain: None. Absent: Arreguin, Bacon, Carson, Oddie).

2. Draft FY 2018-19 Budget Presentation (Wendy Sommer & Pat Cabrera)

This item is for information only.

Wendy Sommer and Pat Cabrera provided a programmatic and financial overview of the Fiscal Year 18-19 agency budget and presented a PowerPoint presentation. A link to the FY 18-19 budget and presentation is available here:

FY 18-19-Budget-Presentation-04-25-18

There was no public comment on this item. Board member Kalb stated that cities tend to develop individual ordinances in a "piece meal" fashion and suggested that the Board have a serious discussion about developing a countywide ordinance banning straws with an opt-out provision. Ms. Sommer stated that this item will be a topic of discussion during the priority setting session in

the fall and will include possible strategies on a more comprehensive ordinance including all food service ware. However, we have a moratorium on ordinances for FY 18-19. Board member Pentin stated that the moratorium on ordinances has appeared to work well over the last couple of years and suggested that the idea of a straw ordinance should first be floated among individual city councils, and then if there appears to be a majority interest the agency can look at an enforcement mechanism. Ms. Sommer stated that in the past the agency also has created model ordinances that cities can adopt. Of course, there will be variations among cities.

Board member Stein asked for clarification on the Guiding Principle that allows the agency to: *Pursue projects with multiple sustainability benefits (greenhouse gas reduction, water, conservation), only when linked with materials and waste management*. Ms. Sommer stated for example, the Energy Council and Built Environment is working on climate adaptation, connecting the impacts of waste, water and energy on the environment. Board member Stein commented that when doing outreach in the various projects, e.g. BayREN and multi-family, there's also an opportunity to provide education regarding composting, organics, etc. Ms. Sommer stated that this is why we try not to work in silos with respect to individual projects but work collaboratively in this effort. Board member Vared stated that she appreciates the focus on upstream and inquired with respect to the programs how the 70% upstream and 30% downstream is broken out in key program areas. Justin Lehrer stated that a significant emphasis on upstream projects is focused on organics. Also, our communications and outreach projects shifted from the Ready, Set, Recycle campaign to the Stop Food Waste, an upstream project focusing on food waste reduction.

President Hannon requested that the final budget document include information on salary savings resulting from the early retirements in 2017. President Hannon commended staff on the project charters as they clearly illustrate what the agency is doing and where we are going. He also asked that staff include information that illustrates if the projects are new or carryover projects from the previous fiscal year, as well as if the project goals were completed or not. Ms. Cabrera stated that the salary savings from the early retirees totaled \$500,000, and she will include a sentence to that effect in the final budget document. Board member Stein commented that it might be helpful to include a diagram that shows how each particular project is aligned with the various agency goals. Ms. Sommer stated that it is difficult to come up with a diagram that breaks out each project but the Agency Goals figure in the budget document shows the portfolio of projects under Organics, Packaging, and Built Environment. Staff will provide an update on project goals at the May meeting. President Hannon thanked staff for a great presentation.

3. National Sword/Recycling Markets Update (Tom Padia)

This item is for information only.

Tom Padia provided an overview of the staff report and distributed a topic brief on National Sword. A link to the staff report and the topic brief is available here:

National-Sword-Update-04-25-18.pdf

There was no public comment on this item. Board member Lamnin stated that she appreciated the report and added this is a good first step towards messaging and good data to share with jurisdictions. Board member Lamnin inquired if there is consideration for looking at manufacturing opportunities to decrease our reliance on China markets. Mr. Padia stated that any efforts regarding market development will be at the state level with CalRecycle. Mr. Padia added that he doubts that there will be any new paper mills sited in California due to the enormous water, wastewater, energy, and transportation requirements. Plastics would be easier to do as the barriers for entry for recyclers

is much lower. Board member Buckholz inquired if there is any discussion that paper would be moved out of mixed recycling to reduce contamination or as a separate waste stream. Mr. Padia stated that Berkeley still has dual-stream collection instead of single-stream collection. The problem with that type of collection is the requirement to have a split-body truck that can pick up a split cart or separate containers and processing lines that are set up for dual streams. The trucks cost about \$500,000 each and it would cost millions of dollars to set up infrastructure for this type of operation. There has been some discussion about this but to the extent that it will come up it likely will be when franchises expire or when jurisdictions engage in new RFP's or negotiations.

Board member Stein commented that she was concerned about the Waste Dive media clip included in the packet with respect to a quote from a King County Councilmember that stated "the waste-to – energy process and system is a form of recycling," and asked that staff provide a rebuttal. Mr. Padia stated that including the clip is not an endorsement of the article. President Hannon stated that he appreciates the comments regarding the article and encouraged staff to continue to bring supplemental information to the Board that staff deems as relevant. Board member Kalb inquired if CalRecycle is coming up with a strategy or process to adjust to China's new policies. Ms. Sommer stated that we are not aware of any strategies or processes and we have invited the LEA (Local Enforcement Agency) to come to our National Sword Task Force meeting on April 26. Ms. Sommer added that she believes that some of the processors and haulers have met with CalRecycle to discuss the issue. Mr. Padia added he was contacted by a reporter from VICE News and they were referred to us by CalRecycle.

Board member Vared stated with regard to haulers modifying their trucks that she has information that she can share offline regarding low-interest funding, and also commented that there could be creative messaging developed similar to the war era effort focusing on conservation. Board member Stein commented that the County could work with all of its haulers and with CalRecycle to obtain funding through the California Air Resources Board and the Carl Moyer program, to get funding to replace diesel engines in the trucks. President Hannon thanked Mr. Padia for his report.

4. Interim appointment(s) to the Recycling Board for WMA appointee unable to attend future Board Meeting(s) (Wendy Sommer)

(Planning Committee and Recycling Board meeting, May 10, 2018 at 7:00 pm, Castro Valley Public Library, 3600 Norbridge Ave, Castro Valley, CA 94546)

Board member Maass requested an interim appointment for the May 10, 2018 PC/RB meeting. Board member Pentin volunteered to serve as the interim appointment. Board member Rood made the motion to approve the interim appointment. Board member Kalb seconded and the motion carried 15-0 (Ayes: Carling, Cox, Duncan, Ellis, Hannon, Hernandez, Kalb, Lamnin, Maass, Martinez, Pentin, Rood, Sadoff. Nays: None. Abstain: None. Absent: Arreguin, Bacon, Carson, Oddie).

VII. COMMUNICATION/MEMBER COMMENTS

There were none.

VIII. ADJOURNMENT

The meeting was adjourned at 4:25 p.m.

This page intentionally left blank

2018 - ALAMEDA COUNTY RECYCLING BOARD ATTENDANCE

	J	F	М	Α	М	J	J	А	S	0	N	D
REGULAR MEMBERS												
J. Buckholz				Χ								
B. Camara	Х	Х	Α	I								
S. Lamnin		Х	Х	Χ								
K. Lewis	Х	Х	Α	Α								
P. Maass	Х	Х	Х	Χ								
D. Martinez	Х	Х	Х	Χ								
J. Moore	Х	Х	Х	Χ								
J. Oddie	Х	Х	Х	Α								
J. Pentin	Х											
T. Rood	Х	Х	Х	Χ								
T. Stein	Х	Х	Х	Χ								
S. Vared	Х	Х	Α	Χ								
	INTERIM APPOINTEES											
Matthew Southworth				Χ								

Measure D: Subsection 64.130, F: Recycling Board members shall attend at least three fourths (3/4) of the regular meetings within a given calendar year. At such time, as a member has been absent from more than one fourth (1/4) of the regular meetings in a calendar year, or from two (2) consecutive such meetings, her or his seat on the Recycling Board shall be considered vacant.

X=Attended A=Absent I=Absent - Interim Appointed

This page intentionally left blank

DATE: May 10, 2018

TO: Recycling Board

FROM: Tom Padia, Deputy Executive Director

SUBJECT: Written Reports of Ex Parte Communications

BACKGROUND

Section 64.130 (Q)(1)(b) of the Alameda County Charter requires that full written disclosure of ex parte communications be entered in the Recycling Board's official record. At the June 19, 1991 meeting of the Recycling Board, the Board approved the recommendation of Legal Counsel that such reports be placed on the consent calendar as a way of entering them into the Board's official record. The Board at that time also requested that staff develop a standard form for the reporting of such communications. A standard form for the reporting of ex parte communications has since been developed and distributed to Board members.

At the December 9, 1999 meeting of the Recycling Board, the Board adopted the following language:

Ex parte communication report forms should be submitted only for ex parte communications that are made after the matter has been put on the Recycling Board's agenda, giving as much public notice as possible.

Per the previously adopted policy, all such reports received will be placed on the consent calendar of the next regularly scheduled Recycling Board meeting.

This page intentionally left blank

DATE: May 10, 2018

TO: Planning Committee/Recycling Board

FROM: Tom Padia, Deputy Executive Director

BY: Meri Soll, Senior Program Manager

SUBJECT: Civicorps Certificate of Support

SUMMARY

Civicorps is a West Oakland nonprofit that helps young men and women ages 18 to 26 earn their high-school diploma, gain job skills and enter family-sustaining careers. In 2014, a partnership of Civicorps, the City of Oakland and Waste Management created the Teamsters Union Apprenticeship Career Pathway. Civicorps staff and leaders would like to recognize the Recycling Board's support of this award-winning program by presenting the Board with a certificate of recognition.

DISCUSSION

The Recycling Board has provided grant funding to Civicorps over the years to support a variety of programs, most recently to assist with the expansion of their Recycling Social Enterprise program, which provides job training to at risk youth. Our prior support also has included funds to support the Apprenticeship Career Pathway program. This innovative, multistep program helps young adults from low-income and under-resourced communities earn their high school diploma and, then, enter a recycling pre-apprenticeship training program. Once students earn their Class B driver's license, they are eligible to enter a union apprenticeship at Waste Management in Oakland and after two years, obtain a Teamster truck-driving job and the opportunity to earn a pension. Recently, Schnitzer Steel has been added to the pathway program for youth to gain skills to enter into the International Union of Operating Engineers.

RECOMMENDATION

This item is for information only.

This page intentionally left blank

DATE: May 10, 2018

TO: Planning Committee/Recycling Board

FROM: Tom Padia, Deputy Director

BY: Justin Lehrer, Senior Program Manager

SUBJECT: Agency Goals and Indicators Update

SUMMARY

The Fiscal Year 2018-19 Budget document includes updates to the interim goals for calendar year 2018. At the May 10 committee meetings, staff will present new upstream indicators and share how these indicators help inform our efforts to prevent waste at the source and optimize local materials use. An update on progress towards all of the 2018 goals also will be provided.

DISCUSSION

The interim goals and indicators provide more specificity and help measure progress on the path toward the strategic plan aspirational goal of "less than 10 percent good stuff in the garbage by 2020." These interim goals include discrete milestones for the organics, packaging, and built-environment focus areas that address all points of the waste hierarchy.

		Organics	Packaging	Built Environment		
UPSTREAM	REDESIGN Increase in materials optimization	Increasing state and local policies addressing reduction of wasted food	Increasing adoption of the How2Recycle label by major brands and greater recognition by consumers	Increase in presence of environmentally certified building materials	INDICATORS (New for 2018)	
	RETHINK Increase in awareness	10% increase of families likely to reduce food waste at home	Not selected as a priority	Not selected as a priority		
	REDUCE / REUSE Less waste generated	10% of food service and grocers participate in food donation	50% reduction in all single-use bags distributed by newly affected stores	<45% waste generated by construction and demolition projects in landfill	SPECIFIC GOALS	
DOWNSTREAM	RECYCLE / ROT Increase in proper sorting	<20% organics in landfill	< 5% recyclal	yclables in landfill		

Redesign - Indicators

This year we are adding upstream indicators that help assess progress towards redesigning products and materials that are problematic for our local waste and recycling systems. Designing products and the built environment to use materials and natural resources most efficiently requires long-term behavioral, technological, and economic change.

These upstream indicators are different than goals and are not intended to measure our progress in Alameda County. They provide insight on broader shifts in consumption patterns that can inform, validate, or redirect our efforts to prevent waste at the source and optimize local materials use. The indicators generally reflect macro-level changes impacting entire sectors. They may be supplemented with direct results from some of our own local upstream efforts, although their broader focus on systemic change inherently leads to less influence over local results.

Organics Indicator: Reducing wasted food upstream requires operational, financial and social shifts in how businesses, schools and residents make decisions that influence food waste generation. Effective policy is needed to support these efforts by reducing barriers and incentivizing food waste generators to prevent food from going to waste, donate surplus food to feed people, then compost food scraps as a last resort.

The last few years have brought a lot of progress for food waste reduction legislation and policy. StopWaste advocated for and contributed content to several new bills passed in California that collectively will make it easier to reduce wasted food:

- AB 1826 Mandatory Commercial Organics Recycling (passed in 2014, implemented 2016)
- SB 1383 Short-Lived Climate Pollutants (passed in 2016)
- AB 954 Food Waste Reduction & Date Labeling Act (passed in 2017)
- AB 1219 California Good Samaritan Food Donation Act (passed in 2017)

Locally, we are active participants in ALL IN Alameda County's food recovery initiative, a multi-stakeholder collaborative launched by County Supervisor Wilma Chan that is working to design and launch a state-of-the-art food recovery sector in the county. We will continue to monitor and support food waste reduction policy at the state and local level as an indicator (and driver) of change in how efficiently we produce, distribute, and consume food.

Packaging Indicator: StopWaste was an early sponsor of the How2Recycle (H2R) label and participated in its initial development in 2010. This voluntary label provides clear and consistent guidance to consumers on how to recycle all components of a package. Over the last year, H2R rose in prominence in the consumer packaged goods space. New members like Amazon, Campbell's, Colgate Palmolive, and Unilever contributed to 37% growth in 2017, following 32% growth in 2016. Alameda County members include Annie's Foods (now part of Campbell's), Plum Organics, and Clorox.

How2Recycle is proving itself as an effective feedback tool that can influence brand owners to redesign their packaging to be more recyclable. Since December 2017, the How2Recycle team has

made over 5,000 specific design improvement recommendations to its members to improve packaging recyclability. Major retailers are also contributing, with Target planning to add the label to all their owned brand packaging by 2020 and Walmart encouraging their suppliers to join H2R.

Looking ahead, How2Recycle anticipates continued growth, particularly among retailers, and they are working to have more brands feature the label ubiquitously throughout their product portfolio. We will continue to monitor H2R progress as an upstream indicator and driver of packaging design for recyclability.

Built Environment Indicator: As part of StopWaste's membership in the Ellen MacArthur Foundation Circular Economy 100, we partnered with global consulting firm Arup to develop a local government primer introducing upstream redesign strategies for optimizing material efficiency in the built environment. The primer addresses potential redesign at four scales: community, buildings, components, and materials. These are emerging practices and substantial, quantifiable progress has only been made at the component and materials scales. To track this trend, StopWaste will monitor the prevalence of building products that have received an environmental certification related to material optimization or characteristics that increase content transparency and make them more readily reused or recycled at end of life. For example, since 2014, the number of Cradle to Cradle certifications in the built environment sector (i.e. building and interior design materials) has increased over 60%.

These collectively provide a snapshot of the current prevalence and we will monitor how much these indicators increase or decrease as we and other industry players advance initiatives to increase upstream redesign strategies. StopWaste's future work to implement actions at each scale will be informed by many factors, including member agency interest and technological and economic innovations in the industry. As momentum and activity toward material optimization through design grow for whole buildings and communities, StopWaste will seek indicators to track progress at those scales.

Progress on the Goals

Rethink

Given the Agency's current upstream focus on organics, the Rethink goal focuses on building awareness and activating residential households to decrease wasted food using food waste reduction strategies, tips and tools. We conducted a baseline survey and focus groups in 2016 to assess household food waste reduction knowledge, attitudes, and behaviors. The results were used to inform development of the county's first Food Waste Prevention campaign, Stop Food Waste. The campaign focuses on upstream strategies to prevent food from going to waste through proper planning, food storage, eating what you buy, using leftovers and composting what's left. A follow-up survey in September 2018 will measure progress towards the agency's food waste reduction goal – a 10% increase in families reducing food waste at home.

Reduce/Reuse

<u>Organics</u>: The reduce/reuse goal for organics is that 10% of food service and grocers participate in food donation. StopWaste has provided grants to the Alameda County Community Food Bank to expand upon the food bank's successful Grocery Rescue Program that recovers surplus food from grocery stores and retail partners to feed food-insecure people. The Grocery Rescue Program increased retail partners from 61 to 124 in 2017, doubling the amount of food diverted to feed people to over 4 million pounds. Our work with K-12 School Districts is addressing surplus food in school cafeterias.

A new School Food Share Guide reinforces new state-wide legislation SB 557 by providing guidance for Nutrition Services staff on establishing food share tables in school cafeterias, saving unwanted food discarded by students, feeding students that may be hungry and donating what's left. We are also collaborating with Alameda County's Environmental Health Department to produce a Food Donation Guide for businesses that environmental health inspectors and mandatory recycling business assistance will distribute to food businesses in an effort to build awareness of the legalities, tax saving incentives and other benefits of donating food.

<u>Packaging</u>: The goal is a 50% reduction in all single-use bags distributed by stores recently affected by the Reusable Bag Ordinance. Parking lot surveys of consumers exiting 41 retail stores recently affected by the expanded bag law shows an 85% reduction in plastic bags distributed at point of sale compared to the baseline data collected at these same stores in 2015.

<u>Built-Environment</u>: The goal is to landfill less than 45% of the total discards generated by construction and demolition activities (C&D) in landfill. Based on preliminary data, we can estimate landfill disposal of 26% of these materials, but this may rise as additional data is analyzed. Staff continues to work on improving the accuracy and completeness of this estimate.

Recycle/Rot

The recycle/rot category are the Agency's "downstream" goals, which tie closely to the Strategic Plan goal of under 10% Good Stuff in Garbage by 2020. For 2018, we have specific goals for organics and recyclables: under 20% organics in landfill and under 5% recyclables in landfill. We anticipate gaining more insight into progress on these goals from the Waste Characterization Study now in progress and will provide a report later this year.

RECOMMENDATION

This item is for information only.

DATE: May 10, 2018

TO: Planning & Organization Committee/Recycling Board

FROM: Tom Padia, Deputy Executive Director

BY: Kelly Schoonmaker, Program Manager

SUBJECT: Bay-Friendly Rated Landscape Update

SUMMARY

The Bay-Friendly Rated Landscape system recognizes excellence in sustainable landscape design, construction and maintenance. Administered by ReScape California (formerly the Bay-Friendly Landscaping and Gardening Coalition), it applies to public, commercial, institutional and multifamily landscape projects, providing a flexible, systematic framework for creating healthy, drought-tolerant and environmentally sound landscapes. At the May 10 meeting, Lakshmi Gunanayagam, Program Manager at ReScape California, will present an overview of the Rated Landscape program.

DISCUSSION

ReScape California recently launched Version 4 of the Bay-Friendly Rated Landscape system ("Rated Landscapes"). Version 4 is the first significant update to the Rated Landscapes since 2008. Updates include many new best practices recommended by local sustainable landscape experts. Additional revisions ensure that projects earning the Bay-Friendly Rating will meet and exceed requirements of the updated California Model Water Efficient Landscape Ordinance (WELO).

With the update complete, ReScape CA is expanding implementation of the Rated Landscapes throughout the Bay Area, working with cities to adopt policies similar to those adopted in Alameda County that incentivize or require landscape projects to achieve the Bay-Friendly Rating. As part of this regional launch, ReScape CA is developing a stakeholder committee, reaching out to cities, and giving presentations on the benefits of Rated Landscapes to organizations in the Bay Area.

In addition to simplifying code compliance, Rated Landscapes save water, keep waste out of landfill, reduce pesticide and fertilizer use, and help slow climate change. Since 2005, 76 rated projects have been completed, totaling over 339 acres, with the following results:

- 78 million gallons of water saved annually
- 184,246 tons of construction waste diverted from landfills

Up to 5,002 tons of avoided greenhouse gas emissions

Currently, 28 Rated Landscape projects are in the planning, design or construction phase, 24 of which are in Alameda County. StopWaste has supported the Rated Landscapes by providing grants and technical assistance to Rated Landscape projects in Alameda County, providing over \$250,000 in grants since 2005. As of Fiscal Year 2018-19, StopWaste will no longer offer grants, but will continue to offer technical assistance for Rated Landscapes. This change is largely due to the growth of the program, but also because grantees have found the technical assistance more valuable than the grants themselves.

For more information on Rated Landscapes, visit: https://rescapeca.org/rated-landscapes/

RECOMMENDATION

This item is for information only.

The New york Times Magazine

https://nyti.ms/2vnSYOC

Can Dirt Save the Earth?

Agriculture could pull carbon out of the air and into the soil — but it would mean a whole new way of thinking about how to tend the land.

By MOISES VELASQUEZ-MANOFF APRIL 18, 2018

hen John Wick and his wife, Peggy Rathmann, bought their ranch in Marin County, Calif., in 1998, it was mostly because they needed more space. Rathmann is an acclaimed children's book author — "Officer Buckle and Gloria" won a Caldecott Medal in 1996 — and their apartment in San Francisco had become cluttered with her illustrations. They picked out the 540-acre ranch in Nicasio mostly for its large barn, which they planned to remake into a spacious studio. Wick, a former construction foreman — they met when he oversaw a renovation of her bathroom — was eager to tackle the project. He knew the area well, having grown up one town away, in Woodacre, where he had what he describes as a "free-range" childhood: little supervision and lots of biking, rope-swinging and playing in the area's fields and glens.

The couple quickly settled into their bucolic new surroundings. Wick began fixing leaks in the barn. Rathmann loved watching the many animals, including ravens, deer and the occasional gopher, from the large porch. She even trained the resident towhees, small brown birds, to eat seed from her hand. So smitten were they with the wildlife, in fact, that they decided to return their ranch to a wilder state. For nearly a century, this had been dairy country, and the rounded, coastal hills were terraced from decades of grazing. Wick and Rathmann would often come home and find, to their annoyance, cows standing on their porch. The first step they

took toward what they imagined would be a more pristine state was to revoke the access enjoyed by the rancher whose cows wandered their property.

Within months of the herd's departure, the landscape began to change. Brush encroached on meadow. Dried-out, uneaten grass hindered new growth. A mysterious disease struck their oak trees. The land seemed to be losing its vitality. "Our vision of wilderness was failing," Wick told me recently. "Our naïve idea was not working out so well."

Wick was especially bothered by the advance of a prickly, yellow-flowered invasive weed called the woolly distaff thistle. He pulled it, mowed it, doused it with herbicides. But the distaff kept moving into what had been pasture. He thought about renting goats to eat the weeds and brush, but they were too expensive. He even considered introducing wild elk, but the bureaucratic hurdles seemed too onerous.

Then Wick and Rathmann met a rangeland ecologist named Jeff Creque. Instead of fighting against what you dislike, Creque suggested, focus on cultivating what you want. Squeeze out weeds by fostering conditions that favor grasses. Creque, who spent 25 years as an organic-pear-and-apple farmer in Northern California before earning a Ph.D. in rangeland ecology, also recommended that they bring back the cows. Grasslands and grazing animals, he pointed out, had evolved together. Unlike trees, grasses don't shed their leaves at the end of the growing season; they depend on animals for defoliation and the recycling of nutrients. The manure and urine from grazing animals fuels healthy growth. If done right, Creque said, grazing could be restorative.

This view ran counter to a lot of conservationist thought, as well as a great deal of evidence. Grazing has been blamed for turning vast swaths of the world into deserts. But from Creque's perspective, how you graze makes all the difference. If the ruminants move like wild buffalo, in dense herds, never staying in one place for too long, the land benefits from the momentary disturbance. If you simply let them loose and then round them up a few months later — often called the "Columbus method" — your land is more likely to end up hard-packed and barren.

Wick was persuaded. He began preparing for the cows' return. He dug wells for water, pounded in steel posts and strung nonbarbed wire. He even bought a molasses lick to supplement the animals' diet of dry thatch. He didn't want medicated livestock excreting drugs that might harm the worms and insects living in his soil — most cows are routinely dewormed — so he tracked down a herd of untreated cows and borrowed them for the summer of 2005.

The cows beat back the encroaching brush. Within weeks of their arrival, new and different kinds of grass began sprouting. Shallow-rooted annuals, which die once they're chewed on, gave way to deep-rooted perennials, which can recover after moderate grazing. By summer's end, the cows, which had arrived shaggy and wild-eyed after a winter spent near the sea, were fat with shiny coats. When Wick returned the herd to its owner that fall, collectively it had gained about 50,000 pounds. Wick needed to take an extra trip with his trailer to cart the cows away. That struck him as remarkable. The land seemed richer than before, the grass lusher. Meadowlarks and other animals were more abundant. Where had that additional truckload of animal flesh come from?

Creque had an answer for him. The carbohydrates that fattened the cows had come from the atmosphere, by way of the grass they ate. Grasses, he liked to say, were like straws sipping carbon from the air, bringing it back to earth. Creque's quiet observation stuck with Wick and Rathmann. It clearly illustrated a concept that Creque had repeatedly tried to explain to them: Carbon, the building block of life, was constantly flowing from atmosphere to plants into animals and then back into the atmosphere. And it hinted at something that Wick and Rathmann had yet to consider: Plants could be deliberately used to pull carbon out of the sky.

Climate change often evokes images of smokestacks, and for good reason: The single largest source of carbon emissions related to human activity is heat and power generation, which accounts for about one-quarter of the carbon we put into the atmosphere. Often overlooked, though, is how we use land, which contributes almost as much. The erosion and degradation of soil caused by plowing, intense grazing and clear-cutting has played a significant role in the atmospheric accumulation of heat-trapping gases. The process is an ancient one. Ice cores from Greenland, which contain air samples trapped thousands of years ago, reveal increases in greenhouse gases that correspond with the rise of farming in Mesopotamia.

Since the start of the Industrial Revolution, agricultural practices and animal husbandry have released an estimated 135 gigatons — 135 billion metric tons — of carbon into the atmosphere, according to Rattan Lal, a soil scientist at Ohio State University. Even at current rates, that's more than a decade's worth of carbon dioxide emissions from all human sources. The world is warming not only because fossil fuels are being burned, but also because soils, forests and wetlands are being ravaged.

In recent years, some scientists have begun to ask whether we can put some of that carbon back into the soil and into living ecosystems, like grasslands and forests. This notion, known as carbon farming, has gained traction as it becomes clear that simply reducing emissions will not sufficiently limit global warming. According to the 2014 report by the Intergovernmental Panel on Climate Change, an authority on climate science that operates under the auspices of the United Nations, humankind also needs to remove some of the carbon already in the atmosphere to avoid, say, the collapse of polar glaciers and the inundation of coastal cities worldwide. "We can't just reduce emissions," Keith Paustian, a soil scientist at Colorado State University and an author of an earlier I.P.C.C. report, told me. "It's all hands on deck. Things like soil and land use — everything is important."

Some of the proposed methods to begin this drawdown include scrubbing the air with great air-conditioner-like machines; fertilizing the oceans with iron dust to prompt algal blooms that, when they die, carry captured carbon to the bottom of the sea; capturing and storing the carbon dioxide that results when energy is produced by burning trees and other plants that removed carbon from the atmosphere during their growth; and crushing and spreading certain types of rock, like basalt, that naturally absorb atmospheric carbon. None of these approaches are yet proved or affordable at the scale needed to make a difference. The most obvious hurdle is the additional energy some of them require, which, unless it comes from a free, renewable source, adds more costs.

Plants, however, remove carbon from the atmosphere already, require no additional power and grow essentially free. During photosynthesis they harness the sun's energy to make sugars by combining hydrogen atoms (acquired from water molecules) with carbon atoms (from carbon dioxide), while emitting oxygen as a

byproduct. (Lest we forget, the fossil fuels that now power civilization contain carbon removed from the air during photosynthesis millions of years ago.) Every spring, as the Northern Hemisphere greens, the concentration of carbon dioxide in the atmosphere dips, before rising again the following fall and winter as foliage dies. Some scientists describe this fluctuation as the earth breathing.

Nearly all the carbon that enters the biosphere is captured during photosynthesis, and as it moves through life's web, every organism takes a cut for its own energy needs, releasing carbon dioxide as exhaust. This circular voyage is the short-term carbon cycle. Carbon farming seeks to interfere with this cycle, slowing the release of carbon back into the atmosphere. The practice is often conceptualized and discussed in terms of storing carbon, but really the idea is to change the flow of carbon so that, for a time at least, the carbon leaving a given ecosystem is less than the carbon entering it.

Dozens of land-management practices are thought to achieve this feat. Planting or restoring forests, for one: Trees lock up carbon in woody material. Another is adding biochar, a charcoal made from heated organic material, directly to soil. Or restoring certain wetlands that have an immense capacity to hold carbon. (Coal beds are the fossilized remains of ancient marshes and peatlands.)

More than one-third of earth's ice-free surface is devoted to agriculture, meaning that much of it is already managed intensively. Carbon farming's fundamental conceit is that if we change how we treat this land, we could turn huge areas of the earth's surface into a carbon sponge. Instead of relying solely on technology to remove greenhouse gases from the air, we could harness an ancient and natural process, photosynthesis, to pump carbon into what's called the pedosphere, the thin skin of living soil at the earth's surface. If adopted widely enough, such practices could, in theory, begin to remove billions of tons of carbon dioxide from the atmosphere, nudging us toward a less perilous climate trajectory than our current one.

In a 2016 paper, Pete Smith, a soil scientist at the University of Aberdeen in Scotland, and the influential climate scientist James Hansen argued that land-management practices are one of the few affordable options available today for

drawing down carbon. "What's surprising to me is that we've not done it sooner," says Smith, who is also a lead author on a recent U.N. report that explores carbon-dioxide-removal technologies. "This has the potential to make a huge difference." Otherwise, Hansen told me, we're leaving the problem to our grandchildren. "That assumption that somehow young people, and people later this century, are going to figure out how to suck it out of the air — that's a pretty big burden to place on them," he said.

The I.P.C.C. is preparing a special report on climate change and land use, to be finalized in 2019, that will consider in greater detail the potential of sequestering carbon in soil. But for now the biggest international effort to promote carbon farming is a French-led initiative called "four per 1,000." The proposal aims to increase the amount of carbon in the soil of crop- and rangelands by 0.4 percent per year through a variety of agricultural and forestry practices. These include agroforestry (growing trees and crops together increases carbon retention), no-till agriculture (plowing causes erosion and carbon loss) and keeping farmland covered (bare dirt bleeds carbon). Doing so, the French argue, could completely halt the buildup of atmospheric carbon dioxide.

Few experts I spoke to think the impact would be quite that grand; Pete Smith, for example, estimates that soil could, at the most, store just 13 percent of annual carbon-dioxide emissions at current levels. "I appreciate that everyone wants to save the planet," he told me, "but we shouldn't fool ourselves that this is all we need to do." Even so, the four-per-1,000 goal highlights how a relatively small annual increase in soil carbon could, on a large-enough scale, have a substantial impact. Increasing soil carbon could yield other benefits, too: Improvements in soil fertility, water retention and greater crop resilience would help agriculture adapt to a warming world. More soil carbon would also reduce the amount of fertilizer needed, decreasing emissions of the powerful greenhouse gas nitrous oxide, a byproduct of excess nitrogen fertilization. It would be profoundly appropriate if agriculture, whose modern practices have themselves contributed to climate change, could become part of its solution. Farming, responsible for the birth of civilization, could now help save it.

In 2007, at Jeff Creque's behest, John Wick got in touch with Whendee Silver, an ecologist at the University of California, Berkeley. Letting cows graze on his property had certainly made the land look healthier, he told Silver. But he and Creque wanted to know: Had it put carbon in the ground? And if so, was it possible to measure how much?

Silver was skeptical that she could measure what was likely to amount to very small changes in his land's soil carbon. The endeavor seemed akin to looking for cups of water added to a swimming pool. But she did sketch out a way to arrive at a definitive answer. When Wick offered to underwrite such a study, she warned him that he might not like the results. She wasn't just going to tell him what he wanted to hear. "That's when I knew I had to work with her," Wick recalls.

Silver agreed to the project, which she began that year. Seeking baseline values for the carbon concentrations in the soil, she and her students collected samples from different rangelands in Marin and Sonoma Counties. The samples with the most carbon, it turned out, came from current and former dairy farms. What distinguished these operations, she learned, was that they often sprayed manure onto their pastures; this was done both to fertilize the land and dispose of waste. Apparently, how soil was treated could very much affect its carbon content — a surprise. The larger implication was that people could potentially "grow" soil carbon deliberately.

But how quickly could they do so? Silver found an answer, in part, by looking for nuclear fallout. In the mid-20th century, radioactive carbon isotopes were spewed into the atmosphere as a result of aboveground nuclear tests. Plants around the world absorbed those isotopes during photosynthesis, effectively turning them into a time stamp. Wherever that carbon shows up, it must have arrived there relatively recently. On dairy farms, Silver found the isotopes a full three feet below the surface. This was another surprise. Conventional wisdom holds that it takes perhaps hundreds of years for carbon-rich topsoil to accumulate. On these dairy farms, however, atmospheric carbon had pushed deep into the earth in a matter of decades.

Wick wanted to know if he could deliberately replicate this process on his ranch — but without manure, which, as it decomposes, can release potent greenhouse

gases like methane and nitrous oxide. The former traps about 30 times as much heat as carbon dioxide, the latter 300 times as much. As a carbon-farming tool, manure might be self-defeating.

Jeff Creque, a onetime organic farmer, had a suggestion: Why not use compost? Compost can contain manure, but whereas manure alone can release nitrogen as nitrous oxide, the nitrogen in compost becomes locked up in complex molecules. At least in theory, that limits the escape of a powerful greenhouse gas. In 2008, Wick, Silver and Creque spread several semi trucks full of the stuff, purchased from a composting plant near Sacramento, onto Wick's ranch and on another ranch in the foothills of the Sierra Nevada. In total, it amounted to about half an inch spread over three acres.

After three years, Wick was disappointed to discover that grazing on its own wasn't leading to carbon sequestration. In fact, the soil lost carbon in untreated control plots. No one knows precisely why, but grasslands throughout California are bleeding carbon. European settlers introduced shallow-rooted annual grasses to the state, which partly displaced deeper-rooted perennial grasses. So carbon put into the ground long ago by deep-rooted grasses may now be seeping out. That's what made the treated plots so remarkable. They had the same history and were exposed to the same conditions, but instead of losing carbon, they absorbed it — at a rate equivalent to nearly 1.5 tons of carbon dioxide per acre per year. That's roughly equal to your car's emissions if you drove from Miami to Seattle.

Silver had thought that the compost would simply break down, releasing its carbon back into the atmosphere or, worse, produce nitrous oxide. But those emissions never occurred; moreover, judging by its chemical signature, most of the carbon moving into the soil came from the air, not the compost. The compost appeared to help the plants draw more carbon from the atmosphere than they otherwise would have.

When it comes to mitigating climate change, soil scientists are most interested in what Silver calls occluded carbon — organic material, often in the form of dead microbes, trapped in clods of dirt. This type of carbon can potentially stay locked away for centuries. (Another carbon type, called labile carbon, continuously cycles

among the atmosphere, plants and organisms in the soil.) It was precisely this more durable carbon, Silver discovered, that increased in the treated plots.

Her findings corresponded with a shift in recent decades in scientists' understanding of how soil carbon forms. Previously they emphasized how dead organic material had to physically work its way into the soil. But the newer model stressed the importance of living plants. Their rootlets are constantly dying, depositing carbon underground, where it's less likely to go airborne. And perhaps more important, as plants pull carbon from the air, their roots inject some of it into the soil, feeding microorganisms and fungi called mycorrhiza. An estimated 12,000 miles of hyphae, or fungal filaments, are found beneath every square meter of healthy soil. Some researchers refer to this tangled, living matrix as the "world wood web." Living plants increase soil carbon by directly nourishing soil ecosystems.

In the years that followed, Silver's analyses of soil cores indicated that the treated land kept taking in carbon. Computer simulations suggest that it will continue to do so for decades. It also retained more moisture and grew about 50 percent more grass. One dose of compost ignited what Silver calls a state change: The plants and the soil — and everything that inhabited it — moved toward a new equilibrium in which the soil ecosystem pulled in and retained greater amounts of carbon.

Silver began publishing her findings in scientific journals in 2010. Her second paper, written with her postdoc Marcia DeLonge and the graduate student Rebecca Ryals, offered a remarkable bit of extrapolation. California has about 56 million acres of rangeland, the single largest type of land use in the state. If compost made with manure was applied to just 5 percent of that area, they calculated, it would offset emissions from about 80 percent of the state's agricultural sector — all the cows raised, crops grown, fertilizer applied and tractors driven in California. Much of that offset came from diverting manure from festering lagoons — where it releases methane and nitrous oxide into the atmosphere — into compost, a one-time benefit. But the ongoing drawdown of carbon dioxide from enhanced grass growth could be important, too. If you treated 41 percent of the state's rangeland, Silver told me, carbon pumped into the earth by photosynthesis might render the entire agricultural sector of the world's sixth-largest economy carbon-neutral for years to come.

The soil-improving practices that Wick, Silver and Creque stumbled into have much in common with another movement known as regenerative agriculture. Its guiding principle is not just to farm sustainably — that implies mere maintenance of what might, after all, be a degraded status quo — but to farm in such a way as to improve the land. The movement emphasizes soil health and, specifically, the buildup of soil carbon. This happy coincidence is one reason that carbon-farming advocates repeatedly describe their project as a "win-win." Society could theoretically remove carbon from the atmosphere and store it in the earth, and at the same time enhance the fortunes of farmers and the overall stability of the nation's food supply.

Farmers' obsession with soil health isn't new, of course. It has been a preoccupation for ages. But modern, conventional agriculture has largely relied on synthetic fertilizer to compensate for losses in natural fertility. And while fertilizers help plants grow, some evidence suggests that they can, in excess, accelerate the loss of carbon from the soil. An influx of nutrients may feed precisely those microbes that release carbon back into the atmosphere. Plants may also excrete less carbon into the earth when bathed in synthetic fertilizers, causing the ancient relationship among plant roots, soil fungi and microbes — the symbiosis that increases soil carbon — to fray.

In recent years, the United States Department of Agriculture's Natural Resources Conservation Service, which was founded in response to the Dust Bowl crisis of the 1930s, has promoted the fostering of soil carbon as an important farming practice. But one of the more remarkable aspects of the regenerative-agriculture movement is that it has been driven largely by farmers themselves. Its proponents fret over soil carbon not necessarily because the N.R.C.S. tells them to, or because they worry about the planet's fate. They have discovered that doing so can help their bottom line.

Darin Williams is one such farmer. He lives near Waverly, Kan., with his wife, Nancy, in a tidy, gray-painted house with a stone chimney. A life-size plastic deer sits on his front lawn, run through with arrows; he uses it for target practice to sharpen his hunting skills. He's a big man with a baby face and a mischievous squint. When

he drove me around his farm last October in his red "one-tonner" pickup truck, he talked incessantly about soil.

For nearly 20 years, Williams worked as a contractor, building houses in Kansas City. But work dried up after the financial crisis hit in 2007. Williams decided to return to the family farm near Waverly, an area of gently rolling plains, and give farming a try. His family had farmed some when he was a teenager before leasing the land to tenants for years, and he knew it was difficult to make ends meet. But he was inspired by an article about a North Dakota rancher and farmer named Gabe Brown, who claimed to have developed, through trial and error, a more efficient and cost-effective way to farm.

The gist of Brown's argument was that if you focus on the health of the soil and not on yield, eventually you come out ahead, not necessarily because you grow more corn or wheat per acre but because the reduction in spending on fertilizer and other inputs lets you produce each bushel of grain more cheaply. Williams decided to follow Brown's prescription. "If after three years, I'm bankrupt, I'll admit it was a bad joke," Williams remembers thinking.

Seven years later, his gamble seems to have paid off. He started with 60 acres, now farms about 2,000 and, when I visited last fall, had just purchased an additional 200. In one of his fields, we walked down a lane he had mowed through his warmweather cover crops — plants grown not to be harvested, but to enrich the soil — which towered over us, reaching perhaps eight feet. They included sorghum, a canelike grass with red-tinted tassels spilling from the tops, mung beans and greentopped daikon radishes low to the ground. Each plant was meant to benefit the earth in a different way. The long radishes broke it up and drew nutrients toward the surface; tall grasses like sorghum produced numerous fine rootlets, adding organic material to the land; legumes harbored bacteria that put nitrogen into the soil. His 120-strong herd of British white cattle — he introduced livestock in 2013 — would eventually eat through the field, turning the plants into cow patties and enriching the soil further. Then he would plant his cash crops. "Had I not found this way to farm," he told me, "we would not be farming."

A mat of dead vegetation — from cover crops, cash-crop residue and dung — covered Williams's fields. The mulch, along with his cover crops, inhibited weeds from becoming established, a major concern for conventional farmers, because so many weeds have evolved resistance to herbicides. "I don't lie awake at night wondering how I'm going to kill weeds," Williams said.

Williams doesn't till his fields. By minimizing soil disturbance, no-till farming prevents erosion, helps retain moisture and leaves the soil ecosystem — worms, fungi, roots and more — mostly intact. At one of his soybean fields, Williams showed me how this translated to soil with "structure." "See how that crumbles into a cottage-cheese look?" he said, massaging a fistful of earth. Small clods fell through his fingers. "That's what you want." Worm holes riddled the dirt, giving it a spongelike quality that was critical, he said, for absorbing rain and preventing runoff. Weather patterns seemed to be changing, he noted. Rain used to arrive in numerous light storms. Now fewer storms came, but they were more intense. "We have to be able to capture rain and store it," he said.

By focusing on soil health, Williams says he has reduced his use of herbicides by 75 percent and fertilizers by 45 percent. He doesn't use pesticides — he relies instead on beneficial insects for pest control — and he saves money by not buying expensive genetically modified, herbicide-resistant seed. He estimates that he produces a bushel of soybeans for about 20 percent less than his conventionally farming neighbors. Last fall, he claims, his yields ranked among the highest in the county. While doing all this, he has so far raised the amount of soil organic matter, a rough predictor of soil carbon concentrations, from around 2 percent to 3.5 percent in some fields. Gabe Brown, for his part, says he has more than tripled his soil carbon since the 1990s. And an official with the U.S.D.A.'s Agricultural Research Service confirmed to me that the amount of carbon in Brown's soil — what his farming has pulled from the atmosphere — was between two and three times as high as it was in his neighbors' land.

The successes of Brown and Williams suggest that farmers can increase carbon in the soil while actually reducing their overall expenses. This could be vital, because in order for carbon farming to have an impact on the climate, as much land as possible, including both crop- and rangeland, will have to be included in the effort.

Critics of regenerative agriculture say that it can't be adopted broadly and intensively enough to matter — or that if it can, the prices of commodities might be affected unfavorably. Mark Bradford, a professor of soils and ecosystem ecology at Yale, questions what he sees as a quasi-religious belief in the benefits of soil carbon. The recommendation makes sense intuitively, he told me. But the extent to which carbon increases crop yield hasn't been quantified, making it somewhat "faith-based."

William Schlesinger, an emeritus soil scientist at Duke, points out that "regenerative" practices might inadvertently cause emissions to rise elsewhere. If you stop tilling to increase soil carbon, for example, but use more herbicides because you have more weeds, then you probably haven't changed your overall emissions profile, he says. He thinks the climate-mitigation potential of carbon farming has been greatly oversold.

Williams has reduced his herbicide use, not increased it, but Schlesinger's broader point — about the need for a careful overall accounting of greenhouse gases — is important. Williams, Brown and others like them aren't focused on climate change; no one really knows if the carbon they put in the ground more than offsets the methane produced by their cows, for example. What they do demonstrate is that augmenting soil carbon while farming is not only possible, but also beneficial, even in a business sense. And that makes the prospect of rolling out these practices on a larger scale much easier to imagine.

The carbon-farming idea is gathering momentum at a time when national climate policy is backsliding. The Trump administration has reversed various Obama-era regulations meant to combat or adapt to climate change, including the Clean Power Plan, which required power plants to reduce their carbon emissions, and a rule instructing the federal government to consider sea-level rise and other effects of a changing climate when building new roads, bridges and other infrastructure.

In the absence of federal leadership on climate — and as emissions continue to rise globally, shrinking the time available to forestall worst-case outcomes — state and local governments (as well as nonprofits) have begun to look into carbon

farming. Last year, Hawaii passed legislation meant to keep it aligned with the Paris agreement, which President Trump has said he will abandon; the state has also created a task force to research carbon farming. The New York state assemblywoman Didi Barrett introduced legislation that would make tax credits available to farmers who increase soil carbon, presumably through methods like those employed by Darin Williams and Gabe Brown. A bill to educate farmers about soil has been proposed in Massachusetts. And in Maryland, legislation focused on soil health passed in 2017. Other carbon-farming projects are in the works in Colorado, Arizona and Montana.

But it is California, already in the vanguard on climate-mitigation efforts, that has led the way on carbon farming. By 2050, the state aims to reduce greenhouse-gas emissions to 20 percent of what they were in 1990. Nearly half its 58 counties have farmers and ranchers at various stages of developing and implementing carbon-farming plans. San Francisco, which already has the largest urban composting program in the country, hopes to become a model carbon-farming metropolis. Cities don't have much room to plant trees or undertake other practices that remove carbon from the atmosphere, says Deborah Raphael, the director of San Francisco's Department of the Environment. But they can certainly produce plenty of compost. "If we can show other cities how doable it is to get green waste out of landfills, we can prove the concept," Raphael told me. "We like to say that San Francisco rehearses the future."

Many of California's carbon-farming efforts owe a debt to Wick, Creque and Silver. In 2008, they founded the Marin Carbon Project, a consortium of ranchers, scientists and land managers. The goal is to develop science-based carbon-farming practices and to help establish the incentives needed to encourage California farmers to adopt them. Silver continues to publish her findings in respected journals. Creque also started a nonprofit, the Carbon Cycle Institute, that assists farmers and ranchers in making carbon-farming plans.

Wick has thrown himself into the policy realm, hiring a lobbyist in Sacramento to push a carbon-farming agenda. (In 2014, he even testified before Congress, outlining the project's discoveries and explaining how compost could increase soil carbon on public lands. He deliberately mentioned "climate" only once.) Educating

policymakers matters because, as Torri Estrada, executive director of the Carbon Cycle Institute, points out, carbon-mitigation efforts that focus on agriculture can be much cheaper per ton of carbon avoided than the flashier energy-efficiency and renewable-energy projects that usually get most of the attention. The major obstacle to their implementation, he says, is that government officials don't understand or know about them.

California's Healthy Soils Initiative, which Wick helped shape, explicitly enlists agriculture in the fight against climate change. In principle, that means this carbon farmers can receive money from the state's climate-mitigation funds not just for compost but also for 34 other soil-improving practices already approved by the Natural Resources Conservation Service. That's important because the compost needed to cover just a few acres can cost thousands of dollars. Wick has also tried to tap federal funding. Once N.R.C.S. scientists vet Silver's work, a compost amendment could become the service's 35th recommendation. As a result, farm bill money, which farmers receive to subsidize food production, could help finance carbon farming done according to Wick's protocol — not to fight climate change explicitly (which is now seen as politicized), but to bolster the health of soil (which isn't).

As a carbon-farming tool, compost bears some notable advantages — namely, it works both preventively and correctively. Composting prevents emissions from the starter material — manure, food scraps — that, if allowed to decompose, might emit potent greenhouse gases. (About one-fifth of United States methane emissions comes from food and other organic material decomposing in dumps.) By enhancing plant growth, it also aids in removing carbon from the atmosphere, a corrective process. And because the carbon in nearly all organic material was originally pulled from the atmosphere during photosynthesis, compost that enters the soil represents the storage of carbon removed from the air earlier — the grass eaten by cows that became manure, or the trees that became wood chips — and at a different location. That, too, is corrective.

Calla Rose Ostrander, Wick's right-hand person at the Marin Carbon Project, told me that the project's greater goal is to completely reframe how we think about waste, to see it as more than a nuisance — to recognize it as a resource, a tool that

can help us garden our way out of the climate problem. Before the modern era, farmers had no choice but to return human and animal waste to the fields. (Wick is looking into the possibility of composting human waste as well; the end product is called humanure.) In a sense, Wick and Ostrander seek to resurrect these ancient practices and, with the aid of modern science, to close the loop among livestock, plants, air and soil — and between cities and the agricultural land that feeds them.

What seems to most impress experts about the Marin Carbon Project is the quality of Silver's research. Eric Toensmeier, the author of "The Carbon Farming Solution" and a lecturer at Yale, says that the project figured out a new way to increase carbon storage on the semiarid grasslands that cover so much of the world. Jason Weller, the former head of the Natural Resources Conservation Service, told me that "the level of science investment is out of the ordinary, or extraordinary, for a group that is really self-started." Weller added that the agency's scientists still needed to vet the research, which they are in the midst of doing. In late 2016 the agency oversaw the application of compost to different California regions — inland, Southern, Northern — to see if land in various conditions would, like Wick's ranch, suck up atmospheric carbon.

But the group also has critics. "I'm very skeptical of their results and their claims," William Horwath, a soil scientist at the University of California, Davis, told me. He wants to see Silver's experiments replicated. This is the project's major weakness: Its big idea is based almost entirely on extrapolation from a few acres in California. At this point, it's impossible to say whether compost can cause land to become a carbon sponge in all climates and conditions, and for how long treated grassland will continue to take in and retain its carbon.

Cows, a flash point in any discussion about climate change, may also present problems. Ruminants burp methane, and while carbon farming does not require their presence, some argue that merely accepting them on the land undermines the goal of reaching a carbon-neutral or -negative future. Livestock emissions account for almost half the heat-trapping gases associated with agriculture, so an obvious way to reduce emissions is to decrease the number of cows on the planet. Instead of dumping compost on rangeland, says Ian Monroe, a lecturer on energy and climate

at Stanford University, why not allow forests cleared for pasture to regrow, and change people's eating habits so they include less meat?

Criticism is directed at compost too. The stuff requires energy to produce; huge machines are required to shred the material and keep it aerated. And it's unclear if compost, like synthetic fertilizer, can cause nitrogen pollution when put on the land, or how much greenhouse gas composting itself generates. (As long as compost mounds are regularly aerated to prevent low-oxygen conditions, composting is thought to produce few emissions.)

Organic material from municipal sources can contain bits of plastic and glass, which no one wants on their fields. Manure might carry seeds of invasive plants. (Silver has seen no evidence of this.) Spreading compost on public rangeland could disrupt plant communities, squeezing out species adapted to conditions of scarcity. And in any carbon-farming scheme, who will monitor and verify that far-flung stretches of land are really absorbing and storing the carbon as they're supposed to?

Horwath considers the amount of compost used in Silver's research — about 10 times the usual application, he estimates — to be unrealistically high for practical use. "It seems an inordinately large amount to apply to any system," he told me. And given what he sees as the many unknowns in Silver's research, that compost would be put to better use on cropland where, he says, scientists know with greater certainty that it could improve water retention and the efficiency of fertilizer.

Then there's the problem of supply. Demand for San Francisco's compost, which mostly goes to vineyards in California's wine country, already outstrips what's available. But Wick thinks more starter material shouldn't be hard to find:

Americans throw out between 30 and 40 percent of all the food they buy, sending it to landfills where it rots and generates greenhouse gases. Silver has calculated that there's enough organic waste material in California to treat one-quarter of its rangeland every few decades.

Still, given the energy requirements, the logistical headaches and the cost, skeptics question whether spreading compost across extensive portions of the world's surface — including conflict zones in the Sahel or Central Asia — is really feasible. Even if it is, soils probably can't soak up carbon indefinitely. If they have a

saturation point, increases in carbon will eventually stop when that moment is reached. And because soil degradation can cause the release of whatever carbon it holds, treated lands would have to be well cared for in perpetuity.

On a cool autumn day at Wick and Rathmann's ranch house, Wick fielded phone calls while I wandered around the cluttered, semicircular room that served as his office and meeting space. A whiteboard displayed scribbles from a presentation on the carbon cycle. Coils of warmly hued yarn hung from the doorways. They came via a local nonprofit dedicated to climate-friendly ranching practices called Fibershed. And draped over a chair was a T-shirt bearing what might as well have been Wick's battle cry: "seq-C," it read, punny shorthand for "sequester carbon." Under that it read, "Doing it in the dirt."

Down the road, he showed me a composting facility that Creque dreamed up initially. He and Wick hoped it would serve as a self-sustaining prototype. "Anything that has ever been alive can be composted," he told me, surveying the 10-foot-tall piles of chicken droppings and feathers, horse bedding (manure and straw) and shredded trees. A tractor mixed woody refuse with animal waste — to get the composting process started requires the right mix of carbon- and nitrogen-rich materials. (That's why some backyard composters recommend urinating on the pile to kick things off: Urine is rich in nitrogen.)

Across the lot, a hulking machine straddled rows of steaming black compost, turning them with a metal spinner. Compost has to be regularly "fluffed," or aerated, Wick explained, to prevent anaerobic microbes from producing methane and nitrous oxide. The manure piles were acrid, but the compost itself had a rich and pleasant odor, like cigars.

Wick hopes that facilities like this will someday dot the American agricultural landscape. The idea is to manufacture compost close to both its source material and the place where it will be used, obviating the emissions from carting heavy materials over long distances. The plant also embodied Wick's contention that composting can help farm carbon and manage waste at the same time. The challenge of affordably creating millions of tons of compost and applying it to great expanses of land is formidable. But there is a pleasing symmetry to the idea that we could use waste to

bring the excess carbon in the atmosphere back to Earth, all while making the world lusher and more bountiful.

When I first got in touch with Wick, in late 2016, he greeted me with a question: "Do you know how the earth's atmosphere was oxygenated?" He was referring to a period 2.3 billion years ago when oxygen, produced by photosynthetic organisms, began building up in the atmosphere, prompting a mass extinction and clearing the way for multicellular life (and, eventually, humans).

"Cyanobacteria?" I guessed.

"Very good," he said. "This might work." Evidently I had passed some sort of scientific literacy test. But his bigger point was that living things — and particularly photosynthetic life — had always been the great engineers of the planet's climate. Now, he believed, we could use that fact to our advantage.

That sort of cosmic thinking about the planet and its history is ultimately what makes Wick's vision so compelling and potentially powerful. The essential insight is one often overlooked when we talk about climate change: The element that threatens to smother civilization is also, in different forms, the fundamental building block of life. To prevent carbon from causing misery and destruction, perhaps we just need to change its location. Perhaps we can find a way to pull it from the air and restore it to the earth.

Moises Velasquez-Manoff is a contributing Op-Ed writer for The Times and author of "An Epidemic of Absence: A New Way of Understanding Allergies and Autoimmune Diseases." He last wrote for the magazine about self-medicating animals.

Sign up for our newsletter to get the best of The New York Times Magazine delivered to your inbox every week.

A version of this article appears in print on April 22, 2018, on Page MM28 of the Sunday Magazine with the headline: Can Dirt Save the Earth?.

© 2018 The New York Times Company